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M o T I VAT I O N A Intermediate State

Core level spectroscopy has gained interest in earth science in the last decade because it provides deep insight into the electronic structure of e ——
elements in mineral phases (crystalline and non-crystalline) and thus, their coordination environment. In resonant inelastic x-ray scattering —

XES
(RIXS) a core-electron is promoted to an excited state just as in XANES but also the energy dependence of the scattered or emitted photon is
measured, which gives additional information about the intermediate and the final state (Fig. 1, 3). Here we present high resolution (HR) XANES
and RIXS spectra of rare earth elements (REE) in minerals and melts. The electronic structure of REE is mainly determined by the interactions Energynansfer|
between electrons in the localized 4f and in the broad 5d bands. e
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» Application: Effect of silicate glass composition on coordination of REE. Fig. 1: RIXS energy scheme.

EXPERIMENTAL /{ S ot aorescence v,
e Melt compositions, taken from [2] as well as simplified natural compositions (haplogranite and haplobasalt), were N \/\/~
doped with selected REE (La (0.5 wt%), Gd (0.5 wt%), Yb (2 wt%) ) and synthesized as glasses. Compositions . | w 2
[2] and simplified natural compositions vary in the aluminum saturation index (ASI: molar radio of o X o PYTL :
Al,O,/(Na,0+K,0+Ca0)) and thus in polymerisation. V » \/\/“
e Yb-2p3d RIXS and HR-XANES was collected at beamline W1 (DESY) using the high resolution WDX spectrometer in S § | L0,
Johann geometry. La and Gd-2p3d RIXS and HR-XANES were collected at beamline ID 26 (ESRF) using the high T — —— T —
resolution WDX spectrometer in Rowland geometry (Fig. 2). Rowland circle was 1m for both setups. S Excitation Energy [eV]
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Fig. 4: HR-XANES for model compounds, ASI-glasses [2] and simplified Fig. 5: HR-XANES for model compounds, ASI-glasses [2] and simplified Fig. 6: HR-XANES for model compounds, ASI-glasses [2] and simplified

natural compositions at La L,-edge, spectra were extracted at the natural compositions at Gd L;-edge, spectra were extracted at the natural compositions at Yb L,-edge, spectra were extracted at the
maximum of the emisson line at 4561 eV . maximum of the emisson line at 6057 eV . maximum of the emisson line at 7415 eV (average over 3 eV).
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Fig. 7: left, 2p3d RIXS intensity map of the pre-edge region at the La L,- Fig. 8: left, 2p3d RIXS intensity map of the pre-edge region at the Gd Fig. 9: left, 2p3d RIXS intensity map of the pre-edge region at the Yb
edge for the model compounds, ASI-glasses [2] and simplified L,-edge for the model compounds, ASI-glases [2] and simplified L,-edge for the model compounds, ASI-glases [2] and simplified
natural compositions; right, cross section along energy transfer natural compositions; right, cross section along energy transfer at natural compositions; right, cross section along energy transfer at
(ET) at the maximum of the exciation energy (average 3eV). the maximum exciation energy (average. 3eV). the maximum exciation energy (average 3eV).

CONCLUSION

e Results derived by EXAFS suggest that the local structure around REE changes with increasing of melt polymerization. E. g. the average Y-O distance changes from 2.27 A to
2.39 A and the number of neighbours increases from 6 to 8 for a change in ASI from 0.115 to 0.768 [4]. EXAFS data at the L,-edge of Gd and Yb show similar trends.
The lower amount of non-bridging oxygens in melts with ASI=1 forces Y to bond to bridging oxygens at longer distances and coordination nhumber to meet local charge
balance requirements.

e Partial fluorescences HR-XANES (Fig. 4, 5, 6) spectra indicate a change of the coordination supported by a shift of the first EXAFS maximum. 2p3d RIXS maps of the pre-edge
region show an increase of the pre-edge and a slight shift of the maximum energy tranfer to higher energies for La (Fig. 7) and Yb (Fig. 9) with increase of ASI. For Gd (Fig.
8), a decrease of the pre-edge intensity and a slight shift of the maximum energy tranfer to lower energies with increase of ASI is observed. Difference in electron
configuration and orbital hybridisation may explain different behavior of the pre-edge.
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